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a b s t r a c t

Evaluation of the competitiveness of high-tech industry is a technical decision-making issue involving
multiple criteria. It is also a practical path to promote a country’s competitiveness. However, the
competitiveness indicators in high-tech industry often act and react upon one another. Moreover, differ-
ent dimensions and indicator weights also affect the evaluation results. In this paper, the Mahalanobis
distance is used to improve the traditional technique for order preference by similarity to ideal solution
(TOPSIS). The improved TOPSIS method has the following properties: (1) an improved relative closeness
which is invariant after non-singular linear transformation, and (2) the weighted Mahalanobis distance is
the same as the weighted Euclidean distance when the indicators are uncorrelated. The new method is
applied to evaluate the competitiveness of the Chinese high-tech industry using data from 2011. Consid-
eration of the correlation between indicators improves the evaluation results (in terms of sorting and
closeness) to a certain extent compared to the traditional TOPSIS method. The top five provinces are:
Guangdong, Jiangsu, Shanghai, Beijing, and Shandong. This finding reflects the practical linkage among
provinces and softens the closeness value, consistent with reality.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

High-tech industries, which are based on intellectually-inten-
sive technologies and integrate multidisciplinary technological
achievements, are the strategic leading industries of the Chinese
national economy. The statistical range of the Chinese high-tech
industry includes five categories: aerospace manufacture, electron-
ics and communications equipment manufacture, computer and
office equipment manufacture, pharmaceuticals and medical
equipment manufacture, as well as instrument and meter manu-
facture. High-tech industries are important because they drive
the world’s economic layout, political affairs, and military compe-
tition. Development of high-tech industry has become a concrete
expression of the strength of a nation or region (Lu & Yu, 2010).
Since the implementation of ‘Torch Plan’ (the national high-tech
industrial development plan), the Chinese high-tech industry has
made remarkable achievements. The evaluation of the competi-
tiveness of provincial high-tech industry has become the basis
for decision-making for the national high-tech industrial layout.
Moreover, such an evaluation broadens our understanding of the
geographical distribution and development status of the Chinese

high-tech industries and provides rational suggestions for the
promotion and planning of them.

Liang (2011) proposed that high-tech industries with high
investment, high growth, high yield, and high risk should have
the following general characteristics. They have (1) a high degree
of uncertainty, (2) high-value with regard to human resources,
and (3) a highly correlated value of intangible assets. Studies on
the evaluation of the competitiveness of Chinese provincial high-
tech industries have attracted the attention of many researchers.
Chen and Sun (2011) used factor and cluster analyses to evaluate
the competitiveness of Chinese provincial high-tech industry. They
also provided a classification system while establishing evaluation
indicators that included the level of human capital investment, the
level of project organization investment, the level of capital invest-
ment, the level of industrial output, and the level of efficiency.

Wu and Li (2008) introduced the technique now traditionally
used to evaluate the competitiveness of high-tech industry called
the technique for order preference by similarity to ideal solution
(TOPSIS) method. They applied it to 31 Chinese provincial admin-
istrative regions and built up the concepts of core competitiveness
within the industry (industrial core technical capabilities, indus-
trial core production capacity, and industrial core market power)
and core competitiveness outside the industry (industrial policy
environment, industry technical support environment, and
industry incubator environment). They sorted the top six regions
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as follows: Beijing, Guangdong, Shanghai, Zhejiang, Shandong, and
Jiangsu. Later, Zheng, Shi, and He (2010) made a comprehensive
competitiveness evaluation of the high-tech industry in Fujian
Province. The proposed evaluation indicators included technologi-
cal innovation competitiveness, economic development competi-
tiveness, financial benefit competitiveness, industrial cluster
competitiveness, and energy saving and environmental protection
competitiveness. Chen (2010) considered the use of data mining
methods (specifically k-means clustering) to evaluate the compet-
itiveness of Chinese high-tech industries. Based on this method,
the top six regions in terms of high-tech industry competitiveness
were found to be: Guangdong, Jiangsu, Beijing, Shanghai, Tianjin,
and Liaoning.

Numerous studies on the evaluation of Chinese provincial high-
tech industrial competitiveness have been conducted, but two is-
sues remain unclear: (1) From the perspective of evaluation object
characteristics, the differences among the provinces in economy,
geography, etc. have made the development of high-tech indus-
tries unbalanced. However, the inter-provincial economic circle
drives the linkage between the high-tech industries in different
provinces, which is a prominent feature of provincial high-tech
industry. Most studies on the competitiveness of Chinese high-tech
industry have been aware of this unbalanced status quo. For exam-
ple, Wang and Yu (2004) used principal component analysis to
conclude that the competitiveness of Chinese high-tech industry
in western regions is weaker than in the eastern regions and that
the gap is gradually increasing. Wang (2007), Liang, Li, Tang, and
Zhao (2007) and Sun, Xiong, and Zheng (2010) introduced empiri-
cal methods and also obtained the result that the development in
high-tech industry is very unbalanced among different regions.
They also found that the size of the imbalance is increasing.
Although this imbalance problem is recognized, it is merely at
the phenomenon level at present. Also, the majority of existing
evaluation methods assume that the samples are independent
and identically distributed. An imperative issue is how to take
the index linkage problem into consideration through method de-
sign and thus to improve the scientific basis of the decision-mak-
ing. (2) From the perspective of evaluation method, consensus
has not been reached on the true evaluation of the competitiveness
results for Chinese provincial high-tech industry. The differences in
evaluation index systems may partly explain this situation, but
more differences are found in terms of the evaluation method it-
self. Although the existing evaluation methods are based on the
characteristics of the collected data, they all have advantages and
disadvantages. TOPSIS and fuzzy methods do not consider the cor-
relation between evaluation indicators, which often results in
information overlap. Secondly, factor analysis all too easily makes
the economic significance of the main components ambiguous
when the factor loadings of the core variables are small. In addi-
tion, analytic hierarchy processes (AHPs) can hardly avoid devia-
tion in subjective factors.

As a typical, uncertain multiple-criteria decision-making
(MCDM) problem, evaluation of the competitiveness of the Chinese
high-tech industry includes mutual interference among evaluation
indicators. Developing a set of evaluation tools suitable for this
kind of problem has considerable theoretical and practical signifi-
cance. The TOPSIS method is an important MCDM tool. It is simple
but comprehensive when applied to the evaluation of a MCDM
problem. Also, the target weight is reflected in the integrated pro-
gram (Boran, Genc, Kurt, & Akay, 2009; Deng, Yeh, & Willis, 2000).
However, the traditional TOPSIS method, which is based on the
Euclidean measure of distance to make decisions, takes the indica-
tors as independent and do not perturb each other. This approach
suffers information overlap and either overestimates or underesti-
mates the indicators which take slack information. Considering the
correlation between the competitiveness evaluation indices for the

Chinese high-tech industry, we propose here an improved TOPSIS
method. The method uses the concept of Mahalanobis distance to
determine the distance to the ideal solution and the negative solu-
tion. The Mahalanobis distance is based on the sample covariance
matrix and can solve the problem of the relevance among indica-
tors as appropriate. This paper also provides proofs of the proper-
ties of the improved TOPSIS method and discusses its applicability
through evaluation of results pertinent to the Chinese high-tech
industry.

The remainder of this paper is organized as follows. Section 2
introduces the classic TOPSIS method. Section 3 uses the Mahalan-
obis distance to modify the traditional TOPSIS method according to
the characteristics of the decision making process. It also derives
the properties of the improved method. Section 4 applies the im-
proved method to evaluate the competitiveness of the Chinese
high-tech industry and analyze the evaluation effect according to
the actual situation. Finally, conclusions and future work are given
in the Section 5.

2. The traditional TOPSIS method

TOPSIS is an uncertain MCDM technology first proposed by
Hwang and Yoon (1981). TOPSIS orders the criteria according to
the distances from the object to the ideal and the negative solu-
tions. The TOPSIS method can be summarized as follows.

Suppose there are m alternatives A1,A2, . . . ,Am and n decision
criteria/attributes C1,C2, . . . ,Cn. Let xij denote the criteria/attribute
value of Ai on Cj (i = 1,2, . . . ,m; j = 1,2, . . . ,n). All the values together
form a decision matrix X = (xij)m�n. The decision matrix can be
standardized in the form

R ¼ ðrijÞm�n; ð1Þ

where rij ¼ xij
Pm

i¼1xij
� ��1=2.

The ideal solution S+ and the negative ideal solution S� (also
called the ‘anti-ideal solution’) are then determined:

Sþ ¼ fsþ1 ; sþ2 ; . . . ; sþn g; S� ¼ fs�1 ; s�2 ; . . . ; s�n g: ð2Þ

For the benefit index Cj:

sþj ¼maxfrijj1 6 i 6 mg; s�j ¼minfrijj1 6 i 6 mg;

and for the cost index Cj:

sþj ¼minfrijj1 6 i 6 mg; s�j ¼maxfrijj1 6 i 6 mg:

We calculate the Euclidean distances of each alternative to the po-
sitive ideal and negative ideal solutions. The distance between
alternative Ai and the positive ideal solution is:

dþi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

ðsþj � rijÞ2
vuut ; i ¼ 1;2; . . . ;m: ð3Þ

The distance between alternative Ai and the negative ideal solution
is:

d�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

ðs�j � rijÞ2
vuut ; i ¼ 1;2; . . . ;m: ð4Þ

Finally, we calculate the relative closeness of each alternative to the
ideal solution:

ci ¼
d�j

d�j þ dþj
; i ¼ 1;2; . . . ;m: ð5Þ

The alternatives are ranked based on their relative closeness. A
higher ci value indicates that Ai is a better alternative, and vice versa.

TOPSIS simultaneously considers information about the positive
and negative ideal solutions. Moreover, the calculation is simple,
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making TOPSIS widely used in multi-attribute evaluation. In appli-
cations, depending on the characteristics of the survey data, the
TOPSIS method modified using fuzzy theory is capable of solving
many practical evaluation issues. Examples include performance
evaluation (Sun, 2010), customer evaluation (Chamodrakas,
Alexopoulou, & Martakos, 2009), energy plans (Kaya & Kahraman,
2011), and business competitiveness evaluation (Torlak, Sevkli,
Sanal, & Zaim, 2011). However, the TOPSIS method based on
Euclidean distance does not consider correlation between indices,
thus causing information overlap which, in turn, affects the deci-
sion results. Thus, the reduction of indicator correlation within
the application often relies on qualitative analysis, the aim being
to try to increase index independence during the process of index
screening. These conditions make this approach strongly
subjective.

3. Improved TOPSIS method using the Mahalanobis distance

To deal with the overlapping information problem, this paper
modifies the traditional TOPSIS method by incorporating the
Mahalanobis distance.

3.1. Definition of Mahalanobis distance

The Mahalanobis distance is a statistical distance that was first
proposed by Mahalanobis (1936). This measure represents the
covariance distance between variables and gauges the similarity
of an unknown sample set to a known one. Thus, the Mahalanobis
distance is calculated based on correlations between variables, by
which different patterns can be identified and analyzed. Compared
with Euclidean distance, the Mahalanobis distance considers the
correlations of the data set and is scale-invariant. In other words,
Mahalanobis distance is a multivariate-effect size.

For a multivariate vector x = (x1,x2, . . . ,xn)T, mean vector
l = (l1,l2, . . . ,lp)T, and covariance matrix R, the Mahalanobis dis-
tance is defined as

DMðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� lÞTR�1ðx� lÞ

q
:

A Mahalanobis distance is also defined for the degree of dissimilar-
ity between two random vectors~x and~y from the same distribution
with the covariance matrix R, as:

dð~x;~yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~x�~yÞTR�1ð~x�~yÞ

q
:

If the covariance matrix is the identity matrix, the Mahalanobis dis-
tance reduces to the Euclidean distance. If the covariance matrix is
diagonal, the Mahalanobis distance can also be shown to be the nor-
malized Euclidean distance.

3.2. TOPSIS improvement using the Mahalanobis distance

A Mahalanobis distance is essentially a weighted distance. The
weight is based on the variance of the indicators and the correlation
degree with other indicators. The Mahalanobis distance standard-
izes data via the factor R�1. Accordingly, the Mahalanobis distance
not only considers the correlation between observations, but also
eliminates the effect of the different dimensions of each index.

Suppose the n dimensional vector ri = (ri1,ri2, . . . ,rin) is an indica-
tor vector of Ai under the index set C = {C1,C2, . . . ,Cn} (so that ri is
the data vector of Ai). Let x = (x1,x2, . . . ,xn) be the weight vector,
where xj is the weight of Cj that meets constraints xj 2 [0,1] andPn

i¼1xj ¼ 1. The ideal solution point S+ and the negative solution
point S� both come from the n dimensional population with mean
l = (l1,l2, . . . ,ln)T and covariance R, so that the Mahalanobis dis-
tance from Ai to the ideal solution point is:

dðri; S
þÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fsþj � rijgTXTR�1Xfsþj � rijg

q
; i ¼ 1;2; . . . ;m: ð6Þ

Similarly, the Mahalanobis distance from Ai to the negative ideal
solution point is:

dðri; S
�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fs�j � rijgTXTR�1Xfs�j � rijg

q
; i ¼ 1;2; . . . ;m: ð7Þ

In these expressions we have used

X ¼ diagð
ffiffiffiffiffiffiffi
x1
p

;
ffiffiffiffiffiffiffi
x2
p

; . . . ;
ffiffiffiffiffiffiffi
xn
p

Þ: ð8Þ

The closeness of each alternative is given by

ci ¼
dðri; S

�Þ
dðri; S

�Þ þ dðri; S
þÞ
; i ¼ 1;2; . . . ;m: ð9Þ

We sort the results according to the value of ci. A higher ci suggests
that Ai is a better solution. In practical application, an unknown
population distribution can be replaced by a sample covariance
matrix.

3.3. Properties of the improved TOPSIS method

The introduction of the Mahalanobis distance as a means to im-
prove the traditional TOPSIS method improves the properties of
the technique. Firstly, the improved TOPSIS method can overcome
correlation disturbance during evaluation. Moreover, the evalua-
tion results are not affected by the indicators’ dimensions.

Property 1. The relative closeness ci in the improved-TOPSIS
method is invariant to non-singular linear transformation.

Proof. Suppose ri = (ri1,ri2, . . . ,rin)T, ~ri ¼ ða1 þ b1ri1; a2 þ b2ri2;

. . . ; an þ bnrinÞT, Sþ ¼ ðsþ1 ; sþ2 ; . . . ; sþn Þ
T, and ~Sþ ¼ ða1 þ b1sþ1 ; a2þ

b2sþ2 ; . . . ; an þ bnsþn Þ
T, where the ai and bi are constants and bi – 0.

Let A = (a1,a2, . . . ,am)T and B = diag(b1,b2, . . . ,bm). Then ~ri ¼ Aþ Bri

and ~Sþ ¼ Aþ BSþ. Given that ~R ¼ BRBT, we have ~R�1 ¼
ðB�1ÞTR�1B�1, so that

dð~ri;~SþÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~ri�~SþÞ

T
XT ~R�1Xð~ri� ~SþÞ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþBri�A�BSþÞTXTðB�1ÞTR�1B�1XðAþBri�A�BSþÞ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðri�SþÞTBTXTðB�1ÞTR�1B�1XBðri�SþÞ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðri�SþÞTXTR�1Xðri�SþÞ

q
¼ dðri;S

þÞ:

For the same reason, dð~ri; ~S�Þ ¼ dðri; S
�Þ. h

Thus, the closeness after non-singular linear transformation is:

~ci ¼
dð~ri; ~S�Þ

dð~ri; ~S�Þ þ dð~ri; ~SþÞ
¼ dðri; S

�Þ
dðri; S

�Þ þ dðri; S
þÞ
¼ ci:

Property 1. Shows that if the standardization of the primary
data is a kind of non-singular linear transformation in the deci-
sion-making process, then the standardization process will not af-
fect the decision result.

Property 2. When the evaluation indicators C1,C2, . . . ,Cn are unre-
lated, then:

dðri; S
þÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

xjðrij � sþj Þ
2

r2
j

vuut and dðri; S
�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

xjðrij � s�j Þ
2

r2
j

vuut
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Proof. We are given that both ri and S+ come from an n dimension
population with mean l = (l1,l2, . . . ,lp)T and covariance R. The n
decision indicators are unrelated to one another, so that
R ¼ diagðr2

1;r2
2; . . . ;r2

nÞ. Then, R�1 ¼ diag 1
r2

1
; 1
r2

2
; . . . ; 1

r2
m

� �
, and

d2ðri; S
þÞ ¼ frij � sþj g

TXTR�1Xfrij � sþj g
¼

ffiffiffiffiffiffiffi
x1
p

ðri1 � sþ1 Þ; . . . ;
ffiffiffiffiffiffiffi
xn
p

ðrin � sþn Þ
� �

�

1
r2

1

. .
.

1
r2

n

2
6664

3
7775

ffiffiffiffiffiffiffi
x1
p ðri1 � sþ1 Þ

..

.

ffiffiffiffiffiffiffiffi
xm
p ðrin � sþn Þ

0
BB@

1
CCA ¼

Xn

j¼1

xjðrij � sþj Þ
2

r2
j

:

h

Thus, dðri; S
þÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

xjðrij�sþ
j
Þ2

r2
j

r
. Similarly,

dðri; S
�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

xjðrij � s�j Þ
2

r2
j

vuut :

Thus, when the evaluation indices are not related to one another,
the weighted Mahalanobis distance and the weighted Euclidean
distance are equivalent. The Mahalanobis distance considers index
differences, the dimensions, as well as the correlation among indi-
cators. Thus, the Mahalanobis distance can prevent the overlapping
of information, making it more suitable for dealing with complex
practical problems. In actual applications, the overall covariance
matrix R is often unknown and can thus be replaced by the sample
covariance matrix S.

4. Evaluation of the competitiveness of provincial high-tech
industry

The improved TOPSIS method is suitable for considering the
correlation among indicators and is consistent with the features
of high-tech industry competitiveness evaluation. Thus, this
section uses the improved TOPSIS method to evaluate the compet-
itiveness of Chinese provincial high-tech industries.

4.1. Evaluation index system for provincial-level high-tech industrial
competitiveness

Based on the principles of science and coordination, compre-
hensiveness and integrity, operability and ease, norms and compa-
rability, the evaluation system for the competitiveness of high-tech
industry is first established. This is based on the statistical indica-
tors from the National Bureau of Statistics and existing study re-
sults from China and elsewhere. The system includes six aspects
and a total of 17 secondary indicators (see Table 1). These aspects
are: human capital input level, material resources input level,
funding input level, industrial output level, industrial innovation
level, and efficiency level. The weights of the index system are
based on the majority of the research using AHP.

We first analyze the input indicators. Human capital input level
(A) reflects the strength of the industrial development scale and re-
fers to the potential power of high-tech industrial development.
Material resource level (B) represents the degree of support by
the government, institutions, and enterprises on industrial devel-
opment as well as reflecting the basis for the development of
high-tech industries. Funding input level (C) epitomizes the level
of capital resources and financing capability. We then analyze
the output indicators. Industrial output level (D) measures the
operating level and performance of high-tech businesses. Indus-
trial innovation level (E) is the source and intrinsic motivation
for the sustainable development of high-tech enterprises. Effi-

ciency level (F) reflects the update speed of the industry and the
capability for equipment renewal.

4.2. Data and correlation testing

This paper gathers data on the 17 indicators pertinent to the
Chinese high-tech industry in 31 provinces, autonomous regions,
and municipalities. It is taken directly from The hi-tech industry in
China Statistical Yearbook 2011 which was sponsored by the Na-
tional Bureau of Statistics (see Appendix A). To verify the effective-
ness of the newly proposed TOPSIS method, this paper first tests
the correlation of the evaluation index using Pearson analysis.
The results are shown in Table 2.

Table 2 shows that: (1) the categories of the input indicators are
significantly correlated to one another at a confidence level of
more than 99%; (2) the correlation of the input and output indica-
tors is also high, except for the classification of efficiency indicators
(f1 and f2); and (3) the correlation among the output indicators is
also high but they are not significantly correlated with the effi-
ciency indicator. Based on such high correlations among indicators,
we have to take a skeptical attitude toward the validity and reli-
ability of the evaluation result obtained using the traditional TOP-
SIS method.

4.3. Evaluation of the competitiveness of provincial high-tech industry
using the improved TOPSIS method

We evaluate high-tech industry competitiveness using the im-
proved TOPSIS method. First, we determine the ideal and negative
ideal solution points for each index point. Secondly, using Eqs. (6)–
(8), we calculate the Mahalanobis distance between Ai and S+ as
well as between Ai and S� (Table 3, second and third columns).
Thirdly, the closeness degree is calculated according to Eq. (9) (Ta-
ble 3, fourth column). For comparison, the results from the im-
proved and traditional TOPSIS methods are shown in Table 3.

The sorting results as calculated by the two different methods
show significant differences (Table 3, last column). By considering
the correlation among the provincial indicators, the differences are
quite evident. This is especially so in provinces that are influenced

Table 1
The evaluation system for the competitiveness of high-tech industry.

First order index Second order index Weight

Human capital
input level A

Number of employees 0.0757

R&D activities equivalent to full-time
equivalent

0.1135

Material resource
input level B

New fixed assets 0.0430

The number of high-tech enterprises 0.0553
All completed or put into the project 0.0369

Funding input
level C

R&D expenditures 0.0618

New product development expenditures 0.0541
Investment 0.0463

Industrial output
level D

Total output value with current prices 0.0437

Main business income 0.0509
Export delivery value 0.0437
Profits and taxes 0.0509

Industrial
innovation
level E

The output value of new products 0.0473

New product sales 0.0541
Number of patented inventions 0.0608

Efficiencylevel F Application rate of fixed assets 0.0757
The project completed and put into
production rate

0.0865
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by their neighboring provinces or have an unbalanced develop-
ment relative to their surrounding provinces, such as Hebei
Province. Hebei has moderate high-tech base conditions but is
located in the hinterland of Beijing and Tianjin, which are well
developed high-tech centers. So the results reveal the sharp
contrast in the high-tech development between Hebei and the
other two municipalities (Beijing and Tianjin). In practice, high-
tech resources outflow from Hebei Province to Beijing and Tianjin.
The traditional TOPSIS method does not consider the interaction
between provincial indicators, which seriously underestimates
the high-tech competitiveness of Hebei. However, Guizhou Prov-
ince shows the opposite deviation. Guizhou is encircled by many

neighboring provinces, including Sichuan, Chongqing, Yunnan,
Guangxi, and Hunan, which all have their own development
characteristics and are superior to Guizhou in terms of high-tech
development. The high-tech base of Guizhou is weaker than that
of its surrounding provinces. Thus, considering the links with
surrounding high-tech provinces, resources that are not represen-
tative of the high-tech competitiveness of Guizhou flow into the
province. Therefore, the evaluation result obtained using the
traditional TOPSIS method is inflated because this correlation
was ignored. The sorting differences relative to the other provinces
can also be explained in a similar manner. The improved TOPSIS
method, which considers the correlation among indicators, is

Table 2
The results of correlation test.

a1 a2 b1 b2 b3 c1 c2 c3 d1 d2 d3 d4 e1 e2 e3 f1 f2

a1 1 0.980** 0.616** 0.943** 0.490** 0.970** 0.978** 0.651** 0.981** 0.979** 0.972** 0.984** 0.961** 0.960** 0.887** 0.083 0.070
a2 0.980** 1 0.485** 0.895** 0.385⁄ 0.992** 0.955** 0.517** 0.941** 0.940** 0.942** 0.944** 0.974** 0.971** 0.956** 0.086 0.025
b1 0.616** 0.485** 1 0.659** 0.802** 0.453* 0.613** 0.941** 0.651** 0.647** 0.587** 0.676** 0.444* 0.448* 0.234 0.395* 0.353
b2 0.943** 0.895** 0.659** 1 0.555** 0.890** 0.946** 0.714** 0.944** 0.943** 0.911** 0.965** 0.887** 0.888** 0.759** 0.074 0.050
b3 0.490** 0.385⁄ 0.802** 0.555** 1 0.348 0.442* 0.831** 0.498** 0.492** 0.429* 0.537** 0.327 0.332 0.201 0.189 0.575**

c1 0.970** 0.992** 0.453* 0.890** 0.348 1 0.962** 0.502** 0.945** 0.945** 0.944** 0.943** 0.985** 0.985** 0.959** 0.059 �0.013
c2 0.978** 0.955** 0.613** 0.946** 0.442* 0.962** 1 0.652** 0.991** 0.991** 0.979** 0.983** 0.962** 0.964** 0.851** 0.103 0.008
c3 0.651** 0.517** 0.941** 0.714** 0.831** 0.502** 0.652** 1 0.700** 0.698** 0.636** 0.722** 0.500** 0.507** 0.280 0.144 0.327
d1 0.981** 0.941** 0.651** 0.944** 0.498** 0.945** 0.991** 0.700** 1 1.000** 0.991** 0.986** 0.948** 0.952** 0.825** 0.051 0.039
d2 0.979** 0.940** 0.647** 0.943** 0.492** 0.945** 0.991** 0.698** 1.000** 1 0.991** 0.985** 0.950** 0.954** 0.825** 0.048 0.034
d3 0.972** 0.942** 0.587** 0.911** 0.429* 0.944** 0.979** 0.636** 0.991** 0.991** 1 0.959** 0.948** 0.951** 0.841** 0.028 0.027
d4 0.984** 0.944** 0.676** 0.965** 0.537** 0.943** 0.983** 0.722** 0.986** 0.985** 0.959** 1 0.943** 0.945** 0.825** 0.083 0.060
e1 0.961** 0.974** 0.444* 0.887** 0.327 0.985** 0.962** 0.500** 0.948** 0.950** 0.948** 0.943** 1 0.999** 0.938** 0.021 �0.039
e2 0.960** 0.971** 0.448* 0.888** 0.332 0.985** 0.964** 0.507** 0.952** 0.954** 0.951** 0.945** 0.999** 1 0.934** 0.017 �0.038
e3 0.887** 0.956** 0.234 0.759** 0.201 0.959** 0.851** 0.280 0.825** 0.825** 0.841** 0.825** 0.938** 0.934** 1 0.028 �0.008
f1 0.083 0.086 0.395* 0.074 0.189 0.059 0.103 0.144 0.051 0.048 0.028 0.083 0.021 0.017 0.028 1 0.393*

f2 0.070 0.025 0.353 0.050 0.575** �0.013 0.008 0.327 0.039 0.034 0.027 0.060 �0.039 �0.038 �0.008 0.393* 1

* Significant at the 00.05 level (bilateral).
** Significant at the 0.01 level (bilateral).

Table 3
Comparison of the results obtained using the traditional and improved TOPSIS methods.

Improved TOPSIS Traditional TOPSIS

Province d+ d� Closeness Order Closeness Order Differ

Beijing 12.523 2.332 0.157 4 0.2172 3 1
Tianjin 12.781 1.587 0.110 9 0.1358 7 2
Hebei 12.648 1.602 0.112 8 0.0145 18 10
Shanxi 13.386 0.808 0.057 26 0.0093 21 5
Neimenggu 13.128 1.031 0.073 19 0.0017 27 8
Liaoning 13.128 1.351 0.093 14 0.0397 10 4
Jilin 13.228 1.011 0.071 20 0.0071 22 2
Heilongjiang 13.029 1.333 0.093 16 0.0118 20 4
Shanghai 12.013 2.591 0.177 3 0.1865 4 1
Jiangsu 9.962 3.967 0.285 2 0.4285 2 0
Zhejiang 12.292 2.045 0.143 6 0.1224 8 2
Anhui 12.810 1.269 0.090 18 0.0164 17 1
Fujian 12.876 1.353 0.095 12 0.1388 6 6
Jiangxi 12.997 1.335 0.093 15 0.0229 16 1
Shandong 12.468 2.285 0.155 5 0.1743 5 0
Henan 12.786 1.471 0.103 11 0.0232 15 4
Hubei 12.678 1.485 0.105 10 0.0490 9 1
Hunan 12.866 1.284 0.091 17 0.0256 13 4
Guangdong 3.703 4.783 0.564 1 0.9977 1 0
Guangxi 13.247 0.934 0.066 22 0.0059 23 1
Hainan 13.189 0.282 0.021 31 0.0010 28 3
Chongqing 13.022 0.959 0.069 21 0.0252 14 7
Sichuang 12.698 1.642 0.114 7 0.0345 11 4
Guizhou 13.173 0.469 0.034 30 0.0129 19 11
Yunnan 13.109 0.739 0.053 27 0.0045 24 3
Xizang 13.185 0.879 0.062 23 0.0003 31 8
Shanxi 12.772 1.330 0.094 13 0.0328 12 1
Gansu 13.225 0.655 0.047 28 0.0034 25 3
Qinghai 13.185 0.868 0.062 24 0.0004 30 6
Ningxia 13.190 0.578 0.042 29 0.0030 26 3
Xinjiang 13.198 0.853 0.061 25 0.0007 29 4
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capable of truly reflecting the characteristics of the provincial high-
tech linkage to provide a firm basis for scientific decision making. A
scatter plot of the closeness obtained using the two methods is gi-
ven in Fig. 1.

Fig. 1 shows that in terms of the absolute value of closeness, the
traditional TOPSIS method cannot effectively deal with information
overlap. This overlap amplifies the closeness among provinces that
have better high-tech development conditions and are surrounded
by other developed provinces, such as Guangdong, Jiangsu, Beijing,
Shanghai, and so on. This condition also induces a high fluctuation
in the closeness. The improved TOPSIS method avoids calculating
overlapping information, restores a reasonable fluctuation range,
softens the closeness, and therefore reflects the real situation be-
tween independent indicators.

Based on the overall evaluation effect, the results obtained
using the improved TOPSIS method are consistent with the out-
come of Chen and Sun (2011), who used factor analysis. The result
is also unanimous with the cluster analysis performed by Chen
(2010). Therefore, this improved TOPSIS method, which resolves
indicator correlation, has good applicability in high-tech industry
evaluation and is of practical significance in scientific evaluation
and decision making.

4.4. Practical implications

The modified method is more suitable for practical situations
than the traditional TOPSIS method which suggests some profound
implications for management practices:

(1). As seen in Fig. 1, high-tech development is unbalanced in
China and there is also a gap between regions in the east
and west. Guizhou, Guangxi, Xinjiang, and Ningxia are obvi-
ously weaker than the eastern provinces in terms of high-
tech competitiveness. This conclusion is consistent with
existing research (Sun et al., 2010; Wang, 2007, etc.). The
imbalance in regional high-tech competitiveness will affect
the entire national innovation capacity, and requires a higher
level of resource allocation.

(2). From the evaluation results, we can see that some provinces
are relatively high in high-tech competitiveness (such as
Beijing, Tianjin, Shanghai, Jiangsu, and Guangdong). This will

impact upon and motivate the neighboring provinces. The
correlation among indicators is a real issue in high-tech
industry competitiveness evaluation (Table 2 has been veri-
fied). Therefore, strengthening high-tech industry integra-
tion in regional economic circles, to achieve internal
linking of economic circles, plays an important role in the
promotion of national high-tech industrial development.

(3). The evaluation index system implies that human capital is
the most important part of high-tech competition. The exist-
ing systems (Wu & Li, 2008; Zheng et al., 2010, etc.) also
emphasize talent strategy in high-tech industry. Human
capital is the ‘soft power’ to promote technological innova-
tion, and it is the core driving force in high-tech develop-
ment. Therefore, enhancing talent building in high-tech
industry plays a foundational role in improving
competitiveness.

5. Conclusions and future work

High-tech industry is a comprehensive national strength. Eval-
uation of these industries is a management issue concerning indus-
trial layout but it is also an MCDM technical issue. The conflict and
correlation among evaluation indices are common features faced
by all evaluation methods. In order to avoid correlation among
indicators, this paper proposes an improved TOPSIS method based
on the concept of the Mahalanobis distance and the method was
applied to evaluate competitiveness in Chinese high-tech industry.
The improved TOPSIS method has been shown to satisfy two prop-
erties: (1) the relative closeness ci is invariant to non-singular lin-
ear transformation; and (2) the weighted Mahalanobis distance is
equal to the weighted Euclidean distance when there is no correla-
tion among indicators. From the evaluation result, we can see that
the difference between the two methods is evident through the
influence that a province experiences due to surrounding prov-
inces. Based on the closeness value, the improved TOPSIS method
softens the closeness and restores the real fluctuation range in
the closeness after considering the correlation. The results ob-
tained using the improved TOPSIS method are consistent with
the conclusions found for similar problems solved using different
methods, and it is also consistent with practical situations.
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Fig. 1. Comparison of the closeness obtained using the traditional and improved TOPSIS methods.
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Appendix A. Primary data

A1 A2 B1 B2 B3 C1 C2 C3 D1 D2 D3 D4 E1 E2 E3 F1 F2

Beijing 249,889 8440 37 1103 24 368,388 503,264 137 2993 3334 1217 265 13,659,447 13,607,777 2136 27 23
Tianjin 240,022 6750 193 817 66 220,547 286,850 216 2242 2291 1115 187 8,539,382 8,481,937 872 89 50
Hebei 171,439 6632 134 438 198 90,836 84,196 214 843 883 158 123 694,240 701,062 285 63 58
Shanxi 12,0945 1098 17 157 50 13,882 14,488 48 249 234 54 20 491,332 478,459 79 35 53
Neimenggu 27,846 227 23 107 48 3672 3962 54 235 225 7 40 68,013 85,620 8 43 67
Liaoning 218,709 4047 175 987 157 258,646 187,839 440 1712 1710 516 183 2,326,777 2,185,478 271 40 49
Jilin 101,147 1644 208 436 757 19,327 20,702 275 727 642 7 80 335,604 317,110 105 76 89
Heilongjiang 72,422 4924 73 199 103 158,880 158,131 104 352 399 14 70 347,638 292,694 183 70 62
Shanghai 531,834 19,278 85 1423 78 673,565 851,462 232 6901 7020 4987 308 10,779,647 11,761,955 2509 37 37
Jiangsu 2,267,628 64,496 971 4868 893 1,351,327 1,839,490 1324 16,278 16,170 9726 1286 25,657,113 25,619,005 3604 73 65
Zhejiang 646,326 24,485 105 3339 241 524,402 580,192 153 3413 3324 1290 404 7,409,716 6,956,994 2199 69 41
Anhui 146,412 6693 147 745 372 122,141 151,688 415 682 662 45 95 688,313 841,827 347 35 53
Fujian 321,249 14,034 88 791 84 373,649 401,274 161 2621 2577 1494 242 9,075,524 8,074,863 624 55 28
Jiangxi 218,106 5418 356 555 517 104,371 123,956 453 1038 1039 147 102 1,275,836 1,175,791 203 79 70
Shandong 545,398 15,618 261 1847 384 612,385 685,158 521 5176 5149 1565 555 10,021,091 11,133,363 1268 50 50
Henan 244,892 7262 187 728 381 98,992 129,567 326 1227 1186 60 169 1,087,199 1,323,861 328 57 57
Hubei 214,977 10,461 161 798 296 198,633 285,418 266 1312 1257 378 192 2,962,179 2,781,652 1201 60 60
Hunan 157,767 4964 124 683 273 95,857 79,681 227 931 906 35 142 1,541,567 1,486,141 490 55 46
Guangdong 3,547,488 156,235 303 5774 374 3,630,850 2,710,412 496 21,050 20,953 13,479 1684 61,567,664 60,464,340 31,356 61 49
Guangxi 110,210 1115 54 338 177 15,746 20,935 93 432 384 95 69 225,311 199,155 195 58 59
Hainan 12,634 392 1 57 1 9668 14,639 8 86 77 2 20 17,900 15,401 31 15 8
Chongqing 88,616 4000 46 324 105 64,451 57,767 195 532 508 57 46 1,632,013 1,469,500 320 24 53
Sichuang 325,736 11,640 379 830 216 247,534 372,848 334 2154 2105 453 258 1,643,519 1,385,860 417 113 53
Guizhou 66,968 4932 6 150 16 98,334 134,270 20 323 266 10 39 684,536 581,453 399 30 29
Yunnan 26,672 1002 10 144 29 17,283 13,069 31 169 160 7 33 276,181 261,031 221 32 30
Xizang 1471 10 1 11 11 648 2 6 5 3 73 61
Shaanxi 198,975 12,006 286 381 99 261,870 326,309 164 858 865 69 109 1,609,766 1,586,068 466 175 45
Gansu 27,545 727 11 81 35 30,314 16,562 22 81 76 3 15 177,660 170,318 29 49 36
Qinghai 5145 22 4 28 7 722 710 5 23 21 0 2 257 215 93 58
Ningxia 6708 408 1 16 4 7680 6555 4 36 31 9 7 198,738 178,064 11 23 33
Xinjiang 7076 114 3 34 15 3701 7992 4 29 26 4 5 31,952 30,638 9 70 58

A1: number of employees; A2: R&D activities equivalent to full-time equivalent.
B1: New fixed assets (100 million); B2: the number of high-tech enterprises; B3: all completed or put into the project.
C1: R&D expenditures (10 thousand); C2: new product development expenditures (10 thousand); C3: investment (100 million).
D1: total output value with current prices (100 million); D2: main business income (100 million); D3: export delivery value (100 million); D4: Profits and taxes (100 million).
E1: the output value of new products (10 thousand); E2: new product sales (10 thousand); E3: number of patented inventions.
F1: application rate of fixed assets; F2: project completion and put into production rate.
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This study makes the following important contributions: (1)
from a methodological perspective, the improved TOPSIS method
provides a more accurate tool for solving MCDM problems. The
correlation among indicators is a widely recognized characteristic
in many MCDM issues. The existing evaluation methods, which
concern the relationships between indicator weights or focuses
on the application of a single index of information, find it difficult
to take both relevance and integrity into consideration (Li & Zang,
2012). This paper considers the correlation among indicators under
the general framework of the TOPSIS method. On the one hand, this
avoids mutual interference between indicators, and, on the other, it
obtains the evaluation results from the overall layout. It also takes
on the role of evaluating the value judgments to provide a scientific
basis for decision-making. (2) From a practical point of view,
Chinese high-tech industrial competitiveness is an important part
of the national strategy. Evaluation results which take into account
the correlation among indicators are strongly supported by practi-
cal evidence. Therefore, the improved TOPSIS method will improve
the accuracy of the evaluation and better reflect the actual
situation.

In this paper, an improved TOPSIS method based on the
weighted Mahalanobis distance is proposed which focuses on
eliminating the linear correlation among indicators. This, to some
extent, improves the accuracy of the evaluation results. However,
compared to linear correlation, nonlinear correlation is even more
pervasive in actual systems. Obviously, our improved TOPSIS
method cannot effectively solve nonlinear-related issues. There-
fore, in future work, the problem of how to eliminate nonlinear
correlations in the relationships among the indicators needs to
be taken into account. However, as multi-attribute evaluations
and associated decision making problems are widely encountered
in real life situations (and correlation among the different attri-
butes is also a very common phenomenon), future work may also
focus on using this improved TOPSIS method for other important
systems. Potential applications include management information
systems, financial systems, macroeconomic systems, etc., which
will all provide good tests of the validity of the new method.
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